

Koffman-index.indd 660 10/30/2015 7:27:45 PM

DATA STRUCTURES
Abstraction and Design

Using Java
THIRD EDITION

ELLIOT B. KOFFMAN
Temple University

PAUL A. T. WOLFGANG
Temple University

Koffman-ffirs.indd 1 11/3/2015 9:04:31 PM

VICE PRESIDENT & DIRECTOR Laurie Rosatone
SENIOR DIRECTOR Don Fowley
EXECUTIVE EDITOR Brian Gambrel
DEVELOPMENT EDITOR Jennifer Lartz
ASSISTANT Jessy Moor
PROJECT MANAGER Gladys Soto
PROJECT SPECIALIST Nichole Urban
PROJECT ASSISTANT Anna Melhorn
MARKETING MANAGER Dan Sayre
ASSISTANT MARKETING MANAGER Puja Katarawala
ASSOCIATE DIRECTOR Kevin Holm
SENIOR CONTENT SPECIALIST Nicole Repasky
PRODUCTION EDITOR Rajeshkumar Nallusamy
PHOTO RESEARCHER Amanda Bustard
COVER PHOTO CREDIT © Robert Davies/Shutterstock

This book was set in 10/12 pt SabonLTStd-Roman by SPiGlobal and printed and bound by Lightning Source Inc.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than 200 years, helping people
around the world meet their needs and fulfill their aspirations. Our company is built on a foundation of principles that include responsibility
to the communities we serve and where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address
the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon impact,
paper specifications and procurement, ethical conduct within our business and among our vendors, and community and charitable support.
For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2016, 2010 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authori-
zation through payment of the appropriate per‐copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923
(Web site: www.copyright.com). Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030‐5774, (201) 748‐6011, fax (201) 748‐6008, or online at: www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their courses during the next
academic year. These copies are licensed and may not be sold or transferred to a third party. Upon completion of the review period, please
return the evaluation copy to Wiley. Return instructions and a free of charge return shipping label are available at: www.wiley.com/go/
returnlabel. If you have chosen to adopt this textbook for use in your course, please accept this book as your complimentary desk copy.
Outside of the United States, please contact your local sales representative.

ISBN: 978-1-119-23914-7 (PBK)
ISBN: 978-1-119-22307-8 (EVALC)

Library of Congress Cataloging-in-Publication Data
Koffman, Elliot B.
 [Objects, abstraction, data structures and design using Java]
 Data structures : abstraction and design using Java / Elliot B. Koffman, Temple University, Paul A.T. Wolfgang, Temple University. —
Third edition.
 pages cm
 Original edition published under title: Objects, abstraction, data structures and design using Java.
 Includes index.
 ISBN 978-1-119-23914-7 (pbk.) 1. Data structures (Computer science) 2. Java (Computer program language) 3. Object-oriented
programming (Computer science) 4. Application program interfaces (Computer software) I. Wolfgang, Paul A. T. II. Title.

 QA76.9.D35K58 2016
 005.7'3—dc23

2015036861

Printing identification and country of origin will either be included on this page and/or the end of the book. In addition, if the ISBN on this
page and the back cover do not match, the ISBN on the back cover should be considered the correct ISBN.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Koffman-ffirs.indd 2 11/4/2015 3:00:52 PM

http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/goreturnlabel

Preface
Our goal in writing this book was to combine a strong emphasis on problem solving and
software design with the study of data structures. To this end, we discuss applications of each
data structure to motivate its study. After providing the specification (interface) and the
implementation (a Java class), we then cover case studies that use the data structure to solve
a significant problem. Examples include maintaining an ordered list, evaluating arithmetic
expressions using a stack, finding the shortest path through a maze, and Huffman coding
using a binary tree and a priority queue. In the implementation of each data structure and in
the solutions of the case studies, we reinforce the message “Think, then code” by performing
a thorough analysis of the problem and then carefully designing a solution (using pseudo‐
code and UML class diagrams) before the implementation. We also provide a performance
analysis when appropriate. Readers gain an understanding of why different data structures
are needed, the applications they are suited for, and the advantages and disadvantages of their
possible implementations.

Intended Audience
This book was written for anyone with a curiosity or need to know about data structures,
those essential elements of good programs and reliable software. We hope that the text will
be useful to readers with either professional or educational interests.

It is intended as a textbook for the second programming course in a computing curriculum
involving the study of data structures, especially one that emphasizes Object‐Oriented Design
(OOD). The text could also be used in a more‐advanced course in algorithms and data struc-
tures. Besides coverage of the basic data structures and algorithms (lists, stacks, queues, trees,
recursion, sorting), there are chapters on sets and maps, balanced binary search trees, graphs,
and an online appendix on event‐oriented programming. Although we expect that most read-
ers will have completed a first programming course in Java, there is an extensive review
chapter (included as an appendix) for those who may have taken a first programming course
in a different language, or for those who need a refresher in Java.

Emphasis on the Java Collections Framework
The book focuses on the interfaces and classes in the Java Collections Framework. We begin
the study of a new data structure by specifying an abstract data type as an interface, which
we adapt from the Java API. Readers are encouraged throughout the text to use the Java
Collections Framework as a resource for their programming.

Our expectation is that readers who complete this book will be familiar with the data struc-
tures available in the Java Collections Framework and will be able to use them in their future
programming. However, we also expect that they will want to know how the data structures
are implemented, so we provide thorough discussions of classes that implement these data
structures. Each class follows the approach taken by the Java designers where appropriate.
However, when their industrial‐strength solutions appear to be too complicated for beginners
to understand, we have provided simpler implementations but have tried to be faithful to
their approach.

Koffman-preface.indd 3 10/20/2015 3:02:35 PM

iv Preface

Think, then Code
To help you “Think, then code” we discuss problem solving and introduce appropriate soft-
ware design tools throughout the textbook. For example, Chapter 1 focuses on OOD and
Class Hierarchies. It introduces the Uniform Modeling Language (also covered in Appendix B)
to document an OOD. It introduces the use of interfaces to specify abstract data types and to
facilitate contract programming and describes how to document classes using Javadoc‐style
comments. There is also coverage of exceptions and exception handling. Chapter 2 intro-
duces the Java Collections Framework and focuses on the List interface, and it shows how to
use big‐O notation to analyze program efficiency. In Chapter 3, we cover different testing
strategies in some detail including a discussion of test‐driven design and the use of the JUnit
program to facilitate testing.

Features of the Third Edition
We had two major goals for the third edition. The first was to bring the coverage of Java up to
Java 8 by introducing new features of Java where appropriate. For example, we use the Java 7
diamond operator when creating new Collection objects. We use the Java 8 StringJoiner in
place of the older StringBuilder for joining strings.

A rather significant change was to introduce Java 8 lambda expressions and functional inter-
faces as a way to facilitate functional programming in Java in a new Section 6.4. Using these
features significantly improved the code.

The second major goal was to provide additional emphasis on testing and debugging. To
facilitate this, we moved our discussion of testing and debugging from an appendix to
Chapter 3 and expanded our coverage of testing including more discussion of JUnit. We also
added a new section that introduced test‐driven development.

A third goal was to ease the transition to Java for Python programmers. When introducing
Java data structures (for example, arrays, lists, sets, and maps), we compared them to equiva-
lent Python data structures.

Other changes to the text included reorganizing the chapter on lists and moving the discussion
of algorithm analysis to the beginning of the chapter so that big‐O notation could be used to
compare the efficiency of different List implementations. We also combined the chapters on
stacks and queues and increased our emphasis on using Deque as an alternative to the legacy
Stack class. We also added a discussion of Timsort, which is used in Java 8, to the chapter on
sorting algorithms. Finally, some large case studies and an appendix were moved to online
supplements.

Case Studies
We illustrate OOD principles in the design and implementation of new data structures and in
the solution of approximately 20 case studies. Case studies follow a five‐step process (prob-
lem specification, analysis, design, implementation, and testing). As is done in industry, we
sometimes perform these steps in an iterative fashion rather than in strict sequence. Several
case studies have extensive discussions of testing and include methods that automate the test-
ing process. Some case studies are revisited in later chapters, and solutions involving different
data structures are compared. We also provide additional case studies on the Web site for the
textbook (www.wiley.com/college/koffman), including one that illustrates a solution to the
same problem using several different data structures.

Koffman-preface.indd 4 10/20/2015 3:02:35 PM

http://www.wiley.com/college/koffman

Preface v

Prerequisites
Our expectation is that the reader will be familiar with the Java primitive data types including
int, boolean, char, and double; control structures including if, case, while, for, and try‐catch;
the String class; the one‐dimensional array; input/output using either JOptionPane dialog win-
dows or text streams (class Scanner or BufferedReader) and console input/output. For those
readers who lack some of the concepts or who need some review, we provide complete coverage
of these topics in Appendix A. Although labeled an Appendix, the review chapter provides full
coverage of the background topics and has all the pedagogical features (discussed below) of the
other chapters. We expect most readers will have some experience with Java programming, but
someone who knows another programming language should be able to undertake the book
after careful study of the review chapter. We do not require prior knowledge of inheritance,
wrapper classes, or ArrayLists as we cover them in the book (Chapters 1 and 2).

Pedagogy
The book contains the following pedagogical features to assist inexperienced programmers
in learning the material.

• Learning objectives at the beginning of each chapter tell readers what skills they should
develop.

• Introductions for each chapter help set the stage for what the chapter will cover and tie
the chapter contents to other material that they have learned.

• Case Studies emphasize problem solving and provide complete and detailed solutions to
real‐world problems using the data structures studied in the chapter.

• Chapter Summaries review the contents of the chapter.
• Boxed Features emphasize and call attention to material designed to help readers become

better programmers.

Pitfall boxes help readers identify common problems and how to avoid
them.

Design Concept boxes illuminate programming design decisions and
trade‐offs.

Programming Style boxes discuss program features that illustrate good
 programming style and provide tips for writing clear and effective code.

Syntax boxes are a quick reference for the Java structures being
introduced.

• Self‐Check and Programming Exercises at the end of each section provide immediate
feedback and practice for readers as they work through the chapter.

• Quick‐Check, Review Exercises, and Programming Projects at the end of each chapter
review chapter concepts and give readers a variety of skill‐building activities, including
longer projects that integrate chapter concepts as they exercise the use of data structures.

Theoretical Rigor
In Chapter 2, we discuss algorithm efficiency and big‐O notation as a measure of algorithm
efficiency. We have tried to strike a balance between pure “hand waving” and extreme rigor
when determining the efficiency of algorithms. Rather than provide several paragraphs of

Koffman-preface.indd 5 10/20/2015 3:02:42 PM

vi Preface

formulas, we have provided simplified derivations of algorithm efficiency using big‐O nota-
tion. We feel this will give readers an appreciation of the performance of various algorithms
and methods and the process one follows to determine algorithm efficiency without bogging
them down in unnecessary detail.

Overview of the book
Chapter 1 introduces Object Oriented Programming, inheritance, and class hierarchies
including interfaces and abstract classes. We also introduce UML class diagrams and Javadoc‐
style documentation. The Exception class hierarchy is studied as an example of a Java class
hierarchy.

Chapter 2 introduces the Java Collections Framework as the foundation for the traditional
data structures. These are covered in separate chapters: lists (Chapter 2), stacks, queues and
deques (Chapter 4), Trees (Chapters 6 and 9), Sets and Maps (Chapter 7), and Graphs
(Chapter 10). Each new data structure is introduced as an abstract data type (ADT). We pro-
vide a specification of each ADT in the form of a Java interface. Next, we implement the data
structure as a class that implements the interface. Finally, we study applications of the data
structure by solving sample problems and case studies.

Chapter 3 covers different aspects of testing (e.g. top‐down, bottom‐up, white‐box, black‐
box). It includes a section on developing a JUnit test harness and also a section on Test‐
Driven Development. It also discuses using a debugger to help find and correct errors.

Chapter 4 discusses stacks, queues, and deques. Several applications of these data structures
are provided.

Chapter 5 covers recursion so that readers are prepared for the study of trees, a recursive data
structure. This chapter could be studied earlier. There is an optional section on list processing
applications of recursion that may be skipped if the chapter is covered earlier.

Chapter 6 discusses binary trees, including binary search trees, heaps, priority queues, and
Huffman trees. It also shows how Java 8 lambda expressions and functional interfaces sup-
port functional programming.

Chapter 7 covers the Set and Map interfaces. It also discusses hashing and hash tables and
shows how a hash table can be used in an implementation of these interfaces. Building an
index for a file and Huffman Tree encoding and decoding are two case studies covered in this
chapter.

Chapter 8 covers various sorting algorithms including mergesort, heapsort, quicksort and
Timsort.

Chapter 9 covers self‐balancing search trees, focusing on algorithms for manipulating them.
Included are AVL and Red‐Black trees, 2‐3 trees, 2‐3‐4 trees, B‐trees, and skip‐lists.

Chapter 10 covers graphs. We provide several well‐known algorithms for graphs, including
Dijkstra’s shortest path algorithm and Prim’s minimal spanning tree algorithm. In most pro-
grams, the last few chapters would be covered in a second course in algorithms and data
structures.

Supplements and Companion Web Sites
The following supplementary materials are available on the Instructor’s Companion Web Site
for this textbook at www.wiley.com/college/koffman. Items marked for students are accessi-
ble on the Student Companion Web Site at the same address.

Koffman-preface.indd 6 10/20/2015 3:02:42 PM

http://www.wiley.com/college/koffman

Preface vii

• Additional homework problems with solutions
• Additional case studies, including one that illustrates a solution to the same problem

using several different data structures
• Source code for all classes in the book (for students and instructors)
• PowerPoint slides
• Electronic test bank for instructors
• Solutions to end‐of‐section odd‐numbered self‐check and programming exercises (for students)
• Solutions to all exercises for instructors
• Solutions to chapter‐review exercises for instructors
• Sample programming project solutions for instructors
• Additional homework and laboratory projects, including cases studies and solutions

Acknowledgments
Many individuals helped us with the preparation of this book and improved it greatly. We are
grateful to all of them. These include students at Temple University who have used notes that
led to the preparation of this book in their coursework, and who class‐tested early drafts of the
book. We would like to thank Rolf Lakaemper and James Korsh, colleagues at Temple
University, who used earlier editions in their classes. We would also like to thank a former
Temple student, Michael Mayle, who provided preliminary solutions to many of the exercises.

We would also like to acknowledge support from the National Science Foundation (grant num-
ber DUE‐1225742) and Principal Investigator Peter J. Clarke, Florida International University
(FIU), to attend the Fifth Workshop on Integrating Software Testing into Programming Courses
(WISTPC 2014) at FIU. Some of the testing methodologies discussed at the workshop were
integrated into the chapter on Testing and Debugging.

We are especially grateful to our reviewers who provided invaluable comments that helped
us correct errors in each version and helped us set our revision goals for the next version. The
individuals who reviewed this book are listed below.

Reviewers
Sheikh Iqbal Ahamed, Marquette University
Justin Beck, Oklahoma State University
John Bowles, University of South Carolina
Mary Elaine Califf, Illinois State University
Tom Cortina, SUNY Stony Brook
Adrienne Decker, SUNY Buffalo
Chris Dovolis, University of Minnesota
Vladimir Drobot, San Jose State University
Kenny Fong, Southern Illinois University, Carbondale
Ralph Grayson, Oklahoma State University
Allan M. Hart, Minnesota State University, Mankato
James K. Huggins, Kettering University
Chris Ingram, University of Waterloo
Gregory Kesden, Carnegie Mellon University
Sarah Matzko, Clemson University
Lester McCann, University of Arizona

Koffman-preface.indd 7 10/20/2015 3:02:42 PM

viii Preface

Ron Metoyer, Oregon State University
Rich Pattis, Carnegie Mellon University
Thaddeus F. Pawlicki, University of Rochester
Sally Peterson, University of Wisconsin—Madison
Salam N. Salloum, California State Polytechnic University, Pomona
Mike Scott, University of Texas—Austin
Victor Shtern, Boston University
Mark Stehlik, Carnegie Mellon University
Ralph Tomlinson, Iowa State University
Frank Tompa, University of Waterloo
Renee Turban, Arizona State University
Paul Tymann, Rochester Institute of Technology
Karen Ward, University of Texas—El Paso
Jim Weir, Marist College
Lee Wittenberg, Kean University
Martin Zhao, Mercer University

Although all the reviewers provided invaluable suggestions, we do want to give special thanks
to Chris Ingram who reviewed every version of the first edition of the manuscript, including
the preliminary pages for the book. His care, attention to detail, and dedication helped us
improve this book in many ways, and we are very grateful for his efforts.

Besides the principal reviewers, there were a number of faculty members who reviewed
 sample pages of the first edition online and made valuable comments and criticisms of its
content. We would like to thank those individuals, listed below.

Content Connections Online Review
Razvan Andonie, Central Washington University
Antonia Boadi, California State University Dominguez Hills
Mikhail Brikman, Salem State College
Robert Burton, Brigham Young University
Chakib Chraibi, Barry University
Teresa Cole, Boise State University
Jose Cordova, University of Louisiana Monroe
Joyce Crowell, Belmont University
Robert Franks, Central College
Barabra Gannod, Arizona State University East
Wayne Goddard, Clemson University
Simon Gray, College of Wooster
Wei Hu, Houghton College
Edward Kovach, Franciscan University of Steubenville
Saeed Monemi, California Polytechnic and State University
Robert Noonan, College of William and Mary

Koffman-preface.indd 8 10/20/2015 3:02:43 PM

Preface ix

Kathleen O’Brien, Foothill College
Rathika Rajaravivarma, Central Connecticut State University
Sam Rhoads, Honolulu Community College
Vijayakumar Shanmugasundaram, Concordia College Moorhead
Gene Sheppard, Perimeter College
Linda Sherrell, University of Memphis
Meena Srinivasan, Mary Washington College
David Weaver, Sheperd University
Stephen Weiss, University of North Carolina—Chapel Hill
Glenn Wiggins, Mississippi College
Bruce William, California State University Pomona

Finally, we want to acknowledge the participants in focus groups for the second programming
course organized by John Wiley & Sons at the Annual Meeting of the SIGCSE Symposium in
March 2004. They reviewed the preface, table of contents, and sample chapters and also
 provided valuable input on the book and future directions of the course.

Focus Group
Claude Anderson, Rose-Hulman Institute of Technology
Jay M. Anderson, Franklin & Marshall University
John Avitabile, College of Saint Rose
Cathy Bishop‐Clark, Miami University—Middletown
Debra Burhans, Canisius College
Michael Clancy, University of California—Berkeley
Nina Cooper, University of Nevada Las Vegas
Kossi Edoh, Montclair State University
Robert Franks, Central College
Evan Golub, University of Maryland
Graciela Gonzalez, Sam Houston State University
Scott Grissom, Grand Valley State University
Jim Huggins, Kettering University
Lester McCann, University of Wisconsin—Parkside
Briana Morrison, Southern Polytechnic State University
Judy Mullins, University of Missouri—Kansas City
Roy Pargas, Clemson University
J.P. Pretti, University of Waterloo
Reza Sanati, Utah Valley State College
Barbara Smith, University of Dayton
Suzanne Smith, East Tennessee State University
Michael Stiber, University of Washington, Bothell
Jorge Vasconcelos, University of Mexico (UNAM)
Lee Wittenberg, Kean University

Koffman-preface.indd 9 10/20/2015 3:02:43 PM

x Preface

We would also like to acknowledge and thank the team at John Wiley & Sons who were
responsible for the management of this edition and ably assisted us with all phases of the
book development and production. They were Gladys Soto, Project Manager, Nichole Urban,
Project Specialist, and Rajeshkumar Nallusamy, Production Editor.

We would like to acknowledge the help and support of our colleague Frank Friedman who
also read an early draft of this textbook and offered suggestions for improvement. Frank and
Elliot began writing textbooks together many years ago and Frank has had substantial influ-
ence on the format and content of these books. Frank also influenced Paul to begin his teach-
ing career as an adjunct faculty member and then hired him as a full‐time faculty member
when he retired from industry. Paul is grateful for his continued support.

Finally, we would like to thank our wives who provided us with comfort and support through
this arduous process. We very much appreciate their understanding and their sacrifices that
enabled us to focus on this book, often during time we would normally be spending with
them. In particular, Elliot Koffman would like to thank

 Caryn Koffman

and Paul Wolfgang would like to thank

 Sharon Wolfgang

Koffman-preface.indd 10 10/20/2015 3:02:43 PM

Contents xi

Contents
Preface iii

 Chapter 1 Object-Oriented Programming and Class Hierarchies 1

 1.1 ADTs, Interfaces, and the Java API 2
Interfaces 2
The implements Clause 5
Declaring a Variable of an Interface Type 6
Exercises for Section 1.1 6

 1.2 Introduction to Object‐Oriented Programming (OOP) 7
A Superclass and Subclass Example 8
Use of this. 9
Initializing Data Fields in a Subclass 10
The No‐Parameter Constructor 11
Protected Visibility for Superclass Data Fields 11
Is‐a versus Has‐a Relationships 12
Exercises for Section 1.2 12

 1.3 Method Overriding, Method Overloading, and Polymorphism 13
Method Overriding 13
Method Overloading 15
Polymorphism 17
Methods with Class Parameters 17
Exercises for Section 1.3 18

 1.4 Abstract Classes 19
Referencing Actual Objects 21
Initializing Data Fields in an Abstract Class 21
Abstract Class Number and the Java Wrapper Classes 21
Summary of Features of Actual Classes, Abstract Classes,
and Interfaces 22
Implementing Multiple Interfaces 23
Extending an Interface 23
Exercises for Section 1.4 23

 1.5 Class Object and Casting 24
The Method toString 24
Operations Determined by Type of Reference Variable 25
Casting in a Class Hierarchy 26
Using instanceof to Guard a Casting Operation 27
The Class Class 29
Exercises for Section 1.5 29

 1.6 A Java Inheritance Example—The Exception Class Hierarchy 29
Division by Zero 29
Array Index Out of Bounds 30
Null Pointer 31
The Exception Class Hierarchy 31

Koffman-ftoc.indd 11 10/20/2015 3:01:55 PM

xii Contents

The Class Throwable 31
Checked and Unchecked Exceptions 32
Handling Exceptions to Recover from Errors 34
Using try‐catch to Recover from an Error 34
Throwing an Exception When Recovery Is Not Obvious 35
Exercises for Section 1.6 36

 1.7 Packages and Visibility 36
Packages 36
The No‐Package‐Declared Environment 37
Package Visibility 38
Visibility Supports Encapsulation 38
Exercises for Section 1.7 39

 1.8 A Shape Class Hierarchy 39
Case Study: Processing Geometric Figures 40
Exercises for Section 1.8 45
Java Constructs Introduced in This Chapter 46
Java API Classes Introduced in This Chapter 46
User‐Defined Interfaces and Classes in This Chapter 47
Quick‐Check Exercises 47
Review Questions 47
Programming Projects 48
Answers to Quick-Check Exercises 51

 Chapter 2 Lists and the Collections Framework 53

 2.1 Algorithm Efficiency and Big-O 54
Big-O Notation 56
Formal Definition of Big-O 57
Summary of Notation 60
Comparing Performance 60
Algorithms with Exponential and Factorial Growth Rates 62
Exercises for Section 2.1 62

 2.2 The List Interface and ArrayList Class 63
The ArrayList Class 64
Generic Collections 66
Exercises for Section 2.2 68

 2.3 Applications of ArrayList 68
A Phone Directory Application 69
Exercises for Section 2.3 69

 2.4 Implementation of an ArrayList Class 70
The Constructor for Class KWArrayList<E> 71
The add(E anEntry) Method 72
The add(int index, E anEntry) Method 73
The set and get Methods 73
The remove Method 74
The reallocate Method 74
Performance of the KWArrayList Algorithms 74
Exercises for Section 2.4 75

 2.5 Single‐Linked Lists 75
A List Node 77

Koffman-ftoc.indd 12 10/20/2015 3:01:55 PM

Contents xiii

Connecting Nodes 78
A Single-Linked List Class 79
Inserting a Node in a List 79
Removing a Node 80
Completing the SingleLinkedList Class 81
The get and set Methods 82
The add Methods 82
Exercises for Section 2.5 83

2.6 Double‐Linked Lists and Circular Lists 84
The Node Class 85
Inserting into a Double‐Linked List 86
Removing from a Double‐Linked List 86
A Double‐Linked List Class 86
Circular Lists 87
Exercises for Section 2.6 88

2.7 The LinkedList Class and the Iterator, ListIterator, and Iterable Interfaces 89
The LinkedList Class 89
The Iterator 89
The Iterator Interface 90
The Enhanced for Loop 92
The ListIterator Interface 92
Comparison of Iterator and ListIterator 94
Conversion between a ListIterator and an Index 95
The Iterable Interface 95
Exercises for Section 2.7 95

2.8 Application of the LinkedList Class 96
Case Study: Maintaining an Ordered List 96
Testing Class OrderedList 101
Exercises for Section 2.8 103

2.9 Implementation of a Double‐Linked List Class 103
Implementing the KWLinkedList Methods 104
A Class that Implements the ListIterator Interface 104
The Constructor 105
The hasNext and next Methods 106
The hasPrevious and previous Methods 107
The add Method 107
Inner Classes: Static and Nonstatic 111
Exercises for Section 2.9 111

2.10 The Collections Framework Design 112
The Collection Interface 112
Common Features of Collections 113
The AbstractCollection, AbstractList, and
AbstractSequentialList Classes 113
The List and RandomAccess Interfaces (Advanced) 114
Exercises for Section 2.10 114
Java API Interfaces and Classes Introduced in this Chapter 116
User‐Defined Interfaces and Classes in this Chapter 116
Quick‐Check Exercises 116
Review Questions 117
Programming Projects 117
Answers to Quick-Check Exercises 119

Koffman-ftoc.indd 13 10/20/2015 3:01:55 PM

xiv Contents

 Chapter 3 Testing and Debugging 121

 3.1 Types of Testing 122
Preparations for Testing 124
Testing Tips for Program Systems 124
Exercises for Section 3.1 125

 3.2 Specifying the Tests 125
Testing Boundary Conditions 125
Exercises for Section 3.2 126

 3.3 Stubs and Drivers 127
Stubs 127
Preconditions and Postconditions 127
Drivers 128
Exercises for Section 3.3 128

 3.4 The JUnit Test Framework 128
Exercises for Section 3.4 132

 3.5 Test‐Driven Development 132
Exercises for Section 3.5 136

 3.6 Testing Interactive Programs in JUnit 137
ByteArrayInputStream 138

ByteArrayOutputStream 138

Exercises for Section 3.6 139

 3.7 Debugging a Program 139
Using a Debugger 140
Exercises for Section 3.7 142
Java API Classes Introduced in This Chapter 144
User‐Defined Interfaces and Classes in This Chapter 144
Quick‐Check Exercises 144
Review Questions 144
Programming 144
Answers to Quick-Check Exercises 146

 Chapter 4 Stacks and Queues 147

 4.1 Stack Abstract Data Type 148
Specification of the Stack Abstract Data Type 148
Exercises for Section 4.1 150

 4.2 Stack Applications 151
Case Study: Finding Palindromes 151
Exercises for Section 4.2 155

 4.3 Implementing a Stack 155
Implementing a Stack with an ArrayList Component 155
Implementing a Stack as a Linked Data Structure 157
Comparison of Stack Implementations 158
Exercises for Section 4.3 159

 4.4 Additional Stack Applications 159
Case Study: Evaluating Postfix Expressions 160
Case Study: Converting From Infix To Postfix 165

Koffman-ftoc.indd 14 10/20/2015 3:01:55 PM

Contents xv

Case Study: Converting Expressions with Parentheses 173
Tying the Case Studies Together 176
Exercises for Section 4.4 176

 4.5 Queue Abstract Data Type 177
A Print Queue 177
The Unsuitability of a “Print Stack” 178
A Queue of Customers 178
Using a Queue for Traversing a Multi‐Branch Data Structure 178
Specification for a Queue Interface 179
Class LinkedList Implements the Queue Interface 179
Exercises for Section 4.5 180

 4.6 Queue Applications 181
Case Study: Maintaining a Queue 181
Exercises for Section 4.6 186

 4.7 Implementing the Queue Interface 187
Using a Double‐Linked List to Implement the Queue Interface 187
Using a Single‐Linked List to Implement the Queue Interface 187
Using a Circular Array to Implement the Queue Interface 189
Exercises for Section 4.7 196

 4.8 The Deque Interface 196
Classes that Implement Deque 198
Using a Deque as a Queue 198
Using a Deque as a Stack 198
Exercises for Section 4.8 199
Java API Classes Introduced in This Chapter 200
User‐Defined Interfaces and Classes in This Chapter 200
Quick‐Check Exercises 201
Review Questions 202
Programming Projects 203
Answers to Quick-Check Exercises 207

 Chapter 5 Recursion 211

 5.1 Recursive Thinking 212
Steps to Design a Recursive Algorithm 214
Proving that a Recursive Method Is Correct 216
Tracing a Recursive Method 216
The Run‐Time Stack and Activation Frames 217
Exercises for Section 5.1 218

 5.2 Recursive Definitions of Mathematical Formulas 219
Tail Recursion versus Iteration 222
Efficiency of Recursion 223
Exercises for Section 5.2 225

 5.3 Recursive Array Search 226
Design of a Recursive Linear Search Algorithm 226
Implementation of Linear Search 227
Design of a Binary Search Algorithm 228
Efficiency of Binary Search 229
The Comparable Interface 230

Koffman-ftoc.indd 15 10/20/2015 3:01:55 PM

xvi Contents

Implementation of Binary Search 230
Testing Binary Search 232
Method Arrays.binarySearch 233
Exercises for Section 5.3 233

 5.4 Recursive Data Structures 233
Recursive Definition of a Linked List 234
Class LinkedListRec 234
Removing a List Node 236
Exercises for Section 5.4 237

 5.5 Problem Solving with Recursion 238
Case Study: Towers of Hanoi 238
Case Study: Counting Cells in a Blob 243
Exercises for Section 5.5 247

 5.6 Backtracking 247
Case Study: Finding a Path through a Maze 248
Exercises for Section 5.6 252
User‐Defined Classes in This Chapter 253
Quick‐Check Exercises 253
Review Questions 253
Programming Projects 254
Answers to Quick-Check Exercises 255

 Chapter 6 Trees 257

 6.1 Tree Terminology and Applications 258
Tree Terminology 258
Binary Trees 259
Some Types of Binary Trees 260
Full, Perfect, and Complete Binary Trees 263
General Trees 263
Exercises for Section 6.1 264

 6.2 Tree Traversals 265
Visualizing Tree Traversals 266
Traversals of Binary Search Trees and Expression Trees 266
Exercises for Section 6.2 267

 6.3 Implementing a BinaryTree Class 268
The Node<E> Class 268
The BinaryTree<E> Class 269
Exercises for Section 6.3 275

 6.4 Java 8 Lambda Expressions and Functional Interfaces 276
Functional Interfaces 277
Passing a Lambda Expression as an Argument 279
A General Preorder Traversal Method 280
Using preOrderTraverse 280
Exercises for Section 6.4 281

 6.5 Binary Search Trees 282
Overview of a Binary Search Tree 282
Performance 283

Koffman-ftoc.indd 16 10/20/2015 3:01:55 PM

Contents xvii

Interface SearchTree 283
The BinarySearchTree Class 283
Insertion into a Binary Search Tree 285
Removal from a Binary Search Tree 288
Testing a Binary Search Tree 293
Case Study: Writing an Index for a Term Paper 294
Exercises for Section 6.5 297

 6.6 Heaps and Priority Queues 297
Inserting an Item into a Heap 298
Removing an Item from a Heap 298
Implementing a Heap 299
Priority Queues 302
The PriorityQueue Class 303
Using a Heap as the Basis of a Priority Queue 303
The Other Methods 306
Using a Comparator 306
The compare Method 306
Exercises for Section 6.6 307

 6.7 Huffman Trees 308
Case Study: Building a Custom Huffman Tree 310
Exercises for Section 6.6 315
Java API Interfaces and Classes Introduced in This Chapter 316
User‐Defined Interfaces and Classes in This Chapter 317
Quick‐Check Exercises 317
Review Questions 318
Programming Projects 318
Answers to Quick-Check Exercises 320

 Chapter 7 Sets and Maps 323

 7.1 Sets and the Set Interface 324
The Set Abstraction 324
The Set Interface and Methods 325
Comparison of Lists and Sets 327
Exercises for Section 7.1 328

 7.2 Maps and the Map Interface 329
The Map Hierarchy 330
The Map Interface 330
Exercises for Section 7.2 332

 7.3 Hash Tables 333
Hash Codes and Index Calculation 333
Methods for Generating Hash Codes 334
Open Addressing 335
Table Wraparound and Search Termination 335
Traversing a Hash Table 337
Deleting an Item Using Open Addressing 337
Reducing Collisions by Expanding the Table Size 338
Reducing Collisions Using Quadratic Probing 338
Problems with Quadratic Probing 339

Koffman-ftoc.indd 17 10/20/2015 3:01:55 PM

xviii Contents

Chaining 340
Performance of Hash Tables 340
Exercises for Section 7.3 342

 7.4 Implementing the Hash Table 344
Interface KWHashMap 344
Class Entry 344
Class HashtableOpen 345
Class HashtableChain 350
Testing the Hash Table Implementations 353
Exercises for Section 7.4 354

 7.5 Implementation Considerations for Maps and Sets 354
Methods hashCode and equals 354
Implementing HashSetOpen 355
Writing HashSetOpen as an Adapter Class 355
Implementing the Java Map and Set Interfaces 356
Interface Map.Entry and Class AbstractMap.SimpleEntry 356
Creating a Set View of a Map 357
Method entrySet and Classes EntrySet and SetIterator 357
Classes TreeMap and TreeSet 358
Exercises for Section 7.5 359

 7.6 Additional Applications of Maps 359
Case Study: Implementing a Cell Phone Contact List 359
Case Study: Completing the Huffman Coding Problem 361
Encoding the Huffman Tree 365
Exercises for Section 7.6 366

 7.7 Navigable Sets and Maps 366
Application of a NavigableMap 368
Exercises for Section 7.7 370
Java API Interfaces and Classes Introduced in This Chapter 372
User‐Defined Interfaces and Classes in This Chapter 372
Quick‐Check Exercises 372
Review Questions 372
Programming Projects 373
Answers to Quick-Check Exercises 374

 Chapter 8 Sorting 375

 8.1 Using Java Sorting Methods 376
Exercises for Section 8.1 380

 8.2 Selection Sort 380
Analysis of Selection Sort 381
Code for Selection Sort 381
Exercises for Section 8.2 383

 8.3 Insertion Sort 383
Analysis of Insertion Sort 384
Code for Insertion Sort 385
Exercises for Section 8.3 386

 8.4 Comparison of Quadratic Sorts 386
Comparisons versus Exchanges 387
Exercises for Section 8.4 388

Koffman-ftoc.indd 18 10/20/2015 3:01:55 PM

Contents xix

8.5 Shell Sort: A Better Insertion Sort 388
Analysis of Shell Sort 389
Code for Shell Sort 390
Exercises for Section 8.5 391

8.6 Merge Sort 391
Analysis of Merge 392
Code for Merge 392
Algorithm for Merge Sort 394
Trace of Merge Sort Algorithm 394
Analysis of Merge Sort 394
Code for Merge Sort 395
Exercises for Section 8.6 396

8.7 Timsort 397
Merging Adjacent Sequences 400
Implementation 400

8.8 Heapsort 405
First Version of a Heapsort Algorithm 405
Revising the Heapsort Algorithm 405
Algorithm to Build a Heap 407
Analysis of Revised Heapsort Algorithm 407
Code for Heapsort 407
Exercises for Section 8.8 409

8.9 Quicksort 409
Algorithm for Quicksort 410
Analysis of Quicksort 411
Code for Quicksort 411
Algorithm for Partitioning 412
Code for partition 413
A Revised partition Algorithm 415
Code for Revised partition Method 416
Exercises for Section 8.9 417

8.10 Testing the Sort Algorithms 417
Exercises for Section 8.10 419

8.11 The Dutch National Flag Problem (Optional Topic) 419
Case Study: The Problem of the Dutch National Flag 419
Exercises for Section 8.11 422
Java Classes Introduced in This Chapter 423
User‐Defined Interfaces and Classes in This Chapter 423
Quick‐Check Exercises 424
Review Questions 424
Programming Projects 424
Answers to Quick-Check Exercises 425

 Chapter 9 Self-Balancing Search Trees 427

 9.1 Tree Balance and Rotation 428
Why Balance Is Important 428
Rotation 428
Algorithm for Rotation 429
Implementing Rotation 430
Exercises for Section 9.1 432

Koffman-ftoc.indd 19 10/20/2015 3:01:55 PM

xx Contents

 9.2 AVL Trees 432
Balancing a Left–Left Tree 432
Balancing a Left–Right Tree 433
Four Kinds of Critically Unbalanced Trees 434
Implementing an AVL Tree 436
Inserting into an AVL Tree 438
Removal from an AVL Tree 443
Performance of the AVL Tree 444
Exercises for Section 9.2 444

 9.3 Red–Black Trees 445
Insertion into a Red–Black Tree 445
Removal from a Red–Black Tree 455
Performance of a Red–Black Tree 455
The TreeMap and TreeSet Classes 455
Exercises for Section 9.3 456

 9.4 2–3 Trees 456
Searching a 2–3 Tree 457
Inserting an Item into a 2–3 Tree 457
Analysis of 2–3 Trees and Comparison with
Balanced Binary Trees 461
Removal from a 2–3 Tree 461
Exercises for Section 9.4 462

 9.5 B‐Trees and 2–3–4 Trees 463
B‐Trees 463
Implementing the B‐Tree 464
Code for the insert Method 466
The insertIntoNode Method 467
The splitNode Method 468
Removal from a B‐Tree 470
B+ Trees 471
2–3–4 Trees 471
Relating 2–3–4 Trees to Red–Black Trees 473
Exercises for Section 9.5 474

 9.6 Skip‐Lists 475
Skip‐List Structure 475
Searching a Skip‐List 476
Performance of a Skip‐List Search 477
Inserting into a Skip‐List 477
Increasing the Height of a Skip‐List 477
Implementing a Skip‐List 477
Searching a Skip‐List 478
Insertion 479
Determining the Size of the Inserted Node 480
Completing the Insertion Process 480
Performance of a Skip‐List 480
Exercises for Section 9.6 480
Java Classes Introduced in This Chapter 482
User‐Defined Interfaces and Classes in This Chapter 482
Quick‐Check Exercises 482

Koffman-ftoc.indd 20 10/20/2015 3:01:55 PM

Contents xxi

Review Questions 483
Programming Projects 484
Answers to Quick-Check Exercises 486

 Chapter 10 Graphs 489

10.1 Graph Terminology 490
Visual Representation of Graphs 490
Directed and Undirected Graphs 491
Paths and Cycles 491
Relationship between Graphs and Trees 493
Graph Applications 493
Exercises for Section 10.1 494

10.2 The Graph ADT and Edge Class 494
Representing Vertices and Edges 495
Exercises for Section 10.2 496

10.3 Implementing the Graph ADT 496
Adjacency List 497
Adjacency Matrix 497
Overview of the Hierarchy 499
Class AbstractGraph 499
The ListGraph Class 501
The MatrixGraph Class 503
Comparing Implementations 504
The MapGraph Class 505
Exercises for Section 10.3 505

10.4 Traversals of Graphs 506
Breadth‐First Search 506
Algorithm for Breadth‐First Search 508
Depth‐First Search 511
Exercises for Section 10.4 517

10.5 Applications of Graph Traversals 517
Case Study: Shortest Path through a Maze 517
Case Study: Topological Sort of a Graph 521
Exercises for Section 10.5 524

10.6 Algorithms Using Weighted Graphs 524
Finding the Shortest Path from a Vertex to All Other Vertices 524
Minimum Spanning Trees 528
Exercises for Section 10.6 531
User‐Defined Classes and Interfaces in This Chapter 533
Quick‐Check Exercises 533
Review Questions 534
Programming Projects 534
Answers to Quick-Check Exercises 536

 Appendix A Introduction to Java 541

A.1 The Java Environment and Classes 542
The Java Virtual Machine 543

Koffman-ftoc.indd 21 10/20/2015 3:01:55 PM

xxii Contents

The Java Compiler 543
Classes and Objects 543
The Java API 543
The import Statement 544
Method main 544

Execution of a Java Program 545
Exercises for Section A.1 545

A.2 Primitive Data Types and Reference Variables 545
Primitive Data Types 545
Primitive‐Type Variables 547
Primitive‐Type Constants 547
Operators 547
Postfix and Prefix Increment 549
Type Compatibility and Conversion 549
Referencing Objects 550
Creating Objects 550
Exercises for Section A.2 551

 A.3 Java Control Statements 551
Sequence and Compound Statements 551
Selection and Repetition Control 551
Nested if Statements 553
The switch Statement 555
Exercises for Section A.3 555

 A.4 Methods and Class Math 555
The Instance Methods println and print 556

Call‐by‐Value Arguments 557
The Class Math 557

Escape Sequences 558
Exercises for Section A.4 559

 A.5 The String, StringBuilder, StringBuffer, and StringJoiner Classes 559
The String Class 559
Strings Are Immutable 562
The Garbage Collector 562
Comparing Objects 562
The String.format Method 564
The Formatter Class 565
The String.split Method 565
Introduction to Regular Expressions 565
Matching One of a Group of Characters 566
Qualifiers 566
Defined Character Groups 567
Unicode Character Class Support 567
The StringBuilder and StringBuffer Classes 567
Java 8 StringJoiner Class 569
Exercises for Section A.5 570

 A.6 Wrapper Classes for Primitive Types 571
Exercises for Section A.6 572

 A.7 Defining Your Own Classes 573
Private Data Fields, Public Methods 576

Koffman-ftoc.indd 22 10/20/2015 3:01:56 PM

Contents xxiii

Constructors 577
The No‐Parameter Constructor 577
Modifier and Accessor Methods 578
Use of this. in a Method 578
The Method toString 578
The Method equals 579
Declaring Local Variables in Class Person 580
An Application that Uses Class Person 580
Objects as Arguments 581
Classes as Components of Other Classes 582
Java Documentation Style for Classes and Methods 582
Exercises for Section A.7 585

A.8 Arrays 585
Data Field length 587
Method Arrays.copyOf 588
Method System.arrayCopy 588
Array Data Fields 589
Array Results and Arguments 590
Arrays of Arrays 590
Exercises for Section A.8 593

A.9 Enumeration Types 594
Using Enumeration Types 595
Assigning Values to Enumeration Types 596
Exercises for Section A.9 596

A.10 I/O Using Streams, Class Scanner, and Class JOptionPane 596
The Scanner 597
Using a Scanner to Read from a File 599
Exceptions 599
Tokenized Input 599
Extracting Tokens Using Scanner.findInLine 600
Using a BufferedReader to Read from an Input Stream 600
Output Streams 600
Passing Arguments to Method main 600
Closing Streams 601
Try with Resources 601
A Complete File‐Processing Application 601
Class InputStream and Character Codes (Optional) 603
The Default Character Coding (Optional) 603
UTF‐8 (Optional) 604
Specifying a Character Encoding (Optional) 605
Input/Output Using Class JOptionPane 605
Converting Numeric Strings to Numbers 606
GUI Menus Using Method showOptionDialog 607
Exercises for Section A.10 607

A.11 Catching Exceptions 608
Catching and Handling Exceptions 608
Exercises for Section A.11 614

A.12 Throwing Exceptions 614
The throws Clause 615

Koffman-ftoc.indd 23 10/20/2015 3:01:56 PM

xxiv Contents

The throw Statement 616
Exercises for Section A.12 619
Java Constructs Introduced in This Appendix 621
Java API Classes Introduced in This Appendix 622
User‐Defined Interfaces and Classes in This Appendix 622
Quick‐Check Exercises 622
Review Questions 622
Programming Projects 623
Answer to Quick‐Check Exercises 624

 Appendix B Overview of UML 625

B.1 The Class Diagram 626
Representing Classes and Interfaces 626
Generalization 629
Inner or Nested Classes 629
Association 629
Aggregation and Composition 630
Generic Classes 631

B.2 Sequence Diagrams 631
Time Axis 632
Objects 633
Life Lines 633
Activation Bars 633
Messages 633
Use of Notes 633

Glossary 635

Index 643

Koffman-ftoc.indd 24 10/20/2015 3:01:56 PM

C h a p t e r

1

T
his chapter describes important features of Java that support Object‐Oriented
Programming (OOP). Object‐oriented languages allow you to build and exploit
 hierarchies of classes in order to write code that may be more easily reused in new

applications. You will learn how to extend an existing Java class to define a new class that
inherits all the attributes of the original, as well as having additional attributes of its own.
Because there may be many versions of the same method in a class hierarchy, we show how
polymorphism enables Java to determine which version to execute at any given time.

We introduce interfaces and abstract classes and describe their relationship with each other and
with actual classes. We introduce the abstract class Number. We also discuss class Object, which
all classes extend, and we describe several of its methods that may be used in classes you create.

As an example of a class hierarchy and OOP, we describe the Exception class hierarchy
and explain that the Java Virtual Machine (JVM) creates an Exception object whenever an
error occurs during program execution. Finally, you will learn how to create packages in Java
and about the different kinds of visibility for instance variables (data fields) and methods.

Object‐Oriented Programming
and Class Hierarchies

1C h a p t e r

C h a p t e r O b j e c t i v e s

 ◆ To learn about interfaces and their role in Java

 ◆ To understand inheritance and how it facilitates code reuse

 ◆ To understand how Java determines which method to execute when there are multiple
methods with the same name in a class hierarchy

 ◆ To become familiar with the Exception hierarchy and the difference between checked and
unchecked exceptions

 ◆ To learn how to define and use abstract classes as base classes in a hierarchy

 ◆ To learn the role of abstract data types and how to specify them using interfaces

 ◆ To study class Object and its methods and to learn how to override them

 ◆ To become familiar with a class hierarchy for shapes

 ◆ To understand how to create packages and to learn more about visibility

Koffman-c01.indd 1 10/30/2015 7:39:45 PM

2 Chapter 1 Object‐Oriented Programming and Class Hierarchies

1.1 ADTs, Interfaces, and the Java API

In earlier programming courses, you learned how to write individual classes consisting of
attributes and methods (operations). You also learned how to use existing classes (e.g., String
and Scanner) to facilitate your programming. These classes are part of the Java Application
Programming Interface (API).

One of our goals is to write code that can be reused in many different applications. One way
to make code reusable is to encapsulate the data elements together with the methods that
operate on that data. A new program can then use the methods to manipulate an object’s data
without being concerned about details of the data representation or the method implementa-
tions. The encapsulated data together with its methods is called an abstract data type (ADT).

Figure 1.1 shows a diagram of an ADT. The data values stored in the ADT are hidden inside
the circular wall. The bricks around this wall are used to indicate that these data values can-
not be accessed except by going through the ADT’s methods.

A class provides one way to implement an ADT in Java. If the data fields are private, they can
be accessed only through public methods. Therefore, the methods control access to the data
and determine the manner in which the data is manipulated.

Another goal of this text is to show you how to write and use ADTs in programming. As you
progress through this book, you will create a large collection of ADT implementations
(classes) in your own program library. You will also learn about ADTs that are available for
you to use through the Java API.

Our principal focus will be on ADTs that are used for structuring data to enable you to more
easily and efficiently store, organize, and process information. These ADTs are often called
data structures. We introduce the Java Collections Framework (part of the Java API), which
provides implementation of these common data structures, in Chapter 2 and study it through-
out the text. Using the classes that are in the Java Collections Framework will make it much
easier for you to design and implement new application programs.

Interfaces
A Java interface is a way to specify or describe an ADT to an applications programmer. An
interface is like a contract that tells the applications programmer precisely what methods are
available and describes the operations they perform. It also tells the applications programmer

I n h e r i t a n c e a n d C l a s s H i e r a r c h i e s

1.1 ADTs, Interfaces, and the Java API
1.2 Introduction to Object‐Oriented Programming
1.3 Method Overriding, Method Overloading, and Polymorphism
1.4 Abstract Classes
1.5 Class Object and Casting
1.6 A Java Inheritance Example—The Exception Class Hierarchy
1.7 Packages and Visibility
1.8 A Shape Class Hierarchy

Case Study: Processing Geometric Figures

ADT
operations

ADT
data

F I G U R E 1 . 1

Diagram of an ADT

Koffman-c01.indd 2 10/30/2015 7:39:47 PM

1.1 ADTs, Interfaces, and the Java API 3

what arguments, if any, must be passed to each method and what result the method will
return. Of course, in order to make use of these methods, someone else must have written a
class that implements the interface by providing the code for these methods.

The interface tells the coder precisely what methods must be written, but it does not provide
a detailed algorithm or prescription for how to write them. The coder must “program to the
interface,” which means he or she must develop the methods described in the interface with-
out variation. If each coder does this job well, that ensures that other programmers can use
the completed class exactly as it is written, without needing to know the details of how it was
coded.

There may be more than one way to implement the methods; hence, several classes may
implement the interface, but each must satisfy the contract. One class may be more efficient
than the others at performing certain kinds of operations (e.g., retrieving information from a
database), so that class will be used if retrieval operations are more likely in a particular
application. The important point is that the particular implementation that is used will not
affect other classes that interact with it because every implementation satisfies the contract.

Besides providing the complete definition (implementation) of all methods declared in the
interface, each implementer of an interface may declare data fields and define other methods
not in the interface, including constructors. An interface cannot contain constructors because
it cannot be instantiated—that is, one cannot create objects, or instances, of it. However, it
can be represented by instances of classes that implement it.

EXAMPLE 1.1 An automated teller machine (ATM) enables a user to perform certain banking operations
from a remote location. It must support the following operations.

1. Verify a user’s Personal Identification Number (PIN).
2. Allow the user to choose a particular account.
3. Withdraw a specified amount of money.
4. Display the result of an operation.
5. Display an account balance.

A class that implements an ATM must provide a method for each operation. We can write
this requirement as the interface ATM and save it in file ATM.java, shown in Listing 1.1. The
keyword interface on the header line indicates that an interface is being declared. If you are
unfamiliar with the documentation style shown in this listing, read about Java documenta-
tion at the end of Section A.7 in Appendix A.

L I S T I N G 1 . 1

Interface ATM.java

/** The interface for an ATM. */
public interface ATM {

 /** Verifies a user's PIN.
 @param pin The user's PIN
 @return Whether or not the User's PIN is verified
 */
 boolean verifyPIN(String pin);

 /** Allows the user to select an account.
 @return a String representing the account selected
 */

Koffman-c01.indd 3 10/30/2015 7:39:47 PM

4 Chapter 1 Object‐Oriented Programming and Class Hierarchies

SYNTAX Interface Definition
FORM:

public interface interfaceName {
 abstract method declarations
 constant declarations
}

EXAMPLE:
public interface Payable {
 public abstract double calcSalary();
 public abstract boolean salaried();
 public static final double DEDUCTIONS = 25.5;
}

MEANING:

Interface interfaceName is defined. The interface body provides headings for abstract
methods and constant declarations. Each abstract method must be defined in a class

 String selectAccount();

 /** Withdraws a specified amount of money
 @param account The account from which the money comes
 @param amount The amount of money withdrawn
 @return Whether or not the operation is successful
 */
 boolean withdraw(String account, double amount);

 /** Displays the result of an operation
 @param account The account for the operation
 @param amount The amount of money
 @param success Whether or not the operation was successful
 */
 void display(String account, double amount, boolean success);

 /** Displays the result of a PIN verification
 @param pin The user's pin
 @param success Whether or not the PIN was valid
 */
 void display(String pin, boolean success);

 /** Displays an account balance
 @param account The account selected
 */
 void showBalance(String account);
}

The interface definition shows the heading only for several methods. Because only the head-
ings are shown, they are considered abstract methods. Each actual method with its body must
be defined in a class that implements the interface. Therefore, a class that implements this
interface must provide a void method called verifyPIN with an argument of type String.
There are also two display methods with different signatures. The first is used to display the
result of a withdrawal, and the second is used to display the result of a PIN verification. The
keywords public abstract are optional (and usually omitted) in an interface because all
interface methods are public abstract by default.

Koffman-c01.indd 4 10/30/2015 7:39:47 PM

1.1 ADTs, Interfaces, and the Java API 5

The implements Clause
The class headings for two classes that implement interface ATM are

public class ATMbankAmerica implements ATM
public class ATMforAllBanks implements ATM

Each class heading ends with the clause implements ATM. When compiling these classes, the
Java compiler will verify that they define the required methods in the way specified by the
interface. If a class implements more than one interface, list them all after implements, with
commas as separators.

Figure 1.2 is a UML (Unified Modeling Language) diagram that shows the ATM interface
and these two implementing classes. Note that a dashed line from the class to the interface is
used to indicate that the class implements the interface. We will use UML diagrams through-
out this text to show relationships between classes and interfaces. Appendix B provides
detailed coverage of UML diagrams.

that implements the interface. Constants defined in the interface (e.g., DEDUCTIONS) are
accessible in classes that implement the interface or in the same way as static fields
and methods in classes (see Section A.4).

NOTES:

The keywords public and abstract are implicit in each abstract method declaration,
and the keywords public static final are implicit in each constant declaration. We
show them in the example here, but we will omit them from now on.

Java 8 also allows for static and default methods in interfaces. They are used to add
features to existing classes and interfaces while minimizing the impact on existing
programs. We will discuss default and static methods when describing where they are
used in the API.

ATMbankAmerica

boolean verifyPIN(String pin)

String selectAccount()

boolean withdraw(String account, double amount)

void display(String account, double amount, boolean success)

void display(String pin, boolean success)

void showBalance(String account)

ATMforAllBanks

boolean verifyPIN(String pin)

String selectAccount()

boolean withdraw(String account, double amount)

void display(String account, double amount, boolean success)

void display(String pin, boolean success)

void showBalance(String account)

‹‹interface››
ATM

boolean verifyPIN(String pin)

String selectAccount()

boolean withdraw(String account, double amount)

void display(String account, double amount, boolean success)

void display(String pin, boolean success)

void showBalance(String account)

F I G U R E 1 . 2

UML Diagram Showing the ATM Interface and Its Implementing Classes

Koffman-c01.indd 5 10/30/2015 7:39:48 PM

6 Chapter 1 Object‐Oriented Programming and Class Hierarchies

Declaring a Variable of an Interface Type
In the previous programming pitfall, we mentioned that you cannot instantiate an interface.
However, you may want to declare a variable that has an interface type and use it to reference
an actual object. This is permitted if the variable references an object of a class type that
implements the interface. After the following statements execute, variable ATM1 references an
ATMbankAmerica object, and variable ATM2 references an ATMforAllBanks object, but both ATM1
and ATM2 are type ATM.

ATM ATM1 = new ATMbankAmerica(); // valid statement
ATM ATM2 = new ATMforAllBanks(); // valid statement

E X E R C I S E S F O R S E C T I O N 1 . 1

S E L F ‐ C H E C K

1. What are the two parts of an ADT? Which part is accessible to a user and which is not?
Explain the relationships between an ADT and a class, between an ADT and an interface,
and between an interface and classes that implement the interface.

2. Correct each of the following statements that is incorrect, assuming that class PDGUI and
class PDConsoleUI implement interface PDUserInterface.
a. PDGUI p1 = new PDConsoleUI();
b. PDGUI p2 = new PDUserInterface();

 P I T F A L L

Not Properly Defining a Method to Be Implemented
If you neglect to define method verifyPIN in class ATMforAllBanks or if you use a
different method signature, you will get the following syntax error:

class ATMforAllBanks should be declared abstract; it does not define method
verifyPIN(String) in interface ATM.

The above error indicates that the method verifyPin was not properly defined.
Because it contains an abstract method that is not defined, Java incorrectly believes
that ATM should be declared to be an abstract class. If you use a result type other than
boolean, you will also get a syntax error.

 P I T F A L L

Instantiating an Interface
An interface is not a class, so you cannot instantiate an interface. The statement

 ATM anATM = new ATM(); // invalid statement

will cause the following syntax error:

 interface ATM is abstract; cannot be instantiated.

Koffman-c01.indd 6 10/30/2015 7:39:48 PM

1.2 Introduction to Object‐Oriented Programming (OOP) 7

1.2 Introduction to Object‐Oriented Programming (OOP)

In this course, you will learn to use features of Java that facilitate the practice of OOP. A
major reason for the popularity of OOP is that it enables programmers to reuse previously
written code saved as classes, reducing the time required to code new applications. Because
previously written code has already been tested and debugged, the new applications should
also be more reliable and therefore easier to test and debug.

However, OOP provides additional capabilities beyond the reuse of existing classes. If an appli-
cation needs a new class that is similar to an existing class but not exactly the same, the pro-
grammer can create it by extending, or inheriting from, the existing class. The new class (called
the subclass) can have additional data fields and methods for increased functionality. Its objects
also inherit the data fields and methods of the original class (called the superclass).

Inheritance in OOP is analogous to inheritance in humans. We all inherit genetic traits from
our parents. If we are fortunate, we may even have some earlier ancestors who have left us

c. PDUserInterface p3 = new PDUserInterface();
d. PDUserInterface p4 = new PDConsoleUI();
e. PDGUI p5 = new PDUserInterface();
 PDUserInterface p6 = p5;

f. PDUserInterface p7;
 p7 = new PDConsoleUI();

3. Explain how an interface is like a contract.

4. What are two different uses of the term interface in programming?

P R O G R A M M I N G

1. Define an interface named Resizable with just one abstract method, resize, that is a void
method with no parameter.

2. Write a Javadoc comment for the following method of a class Person. Assume that class
Person has two String data fields familyName and givenName with the obvious meanings.
Provide preconditions and postconditions if needed.
public int compareTo(Person per) {
 if (familyName.compareTo(per.familyName) == 0)
 return givenName.compareTo(per.givenName);
 else
 return familyName.compareTo(per.familyName);
}

3. Write a Javadoc comment for the following method of class Person. Provide preconditions
and postconditions if needed.
public void changeFamilyName(boolean justMarried, String newFamily) {
 if (justMarried)
 familyName = newFamily;
}

4. Write method verifyPIN for class ATMbankAmerica assuming this class has a data field pin
(type String).

Koffman-c01.indd 7 10/30/2015 7:39:48 PM

8 Chapter 1 Object‐Oriented Programming and Class Hierarchies

an inheritance of monetary value. As we grow up, we benefit from our ancestors’ resources,
knowledge, and experiences, but our experiences will not affect how our parents or ancestors
developed. Although we have two parents to inherit from, Java classes can have only one
parent.

Inheritance and hierarchical organization allow you to capture the idea that one thing may be
a refinement or an extension of another. For example, an object that is a Human is a Mammal (the
superclass of Human). This means that an object of type Human has all the data fields and meth-
ods defined by class Mammal (e.g., method drinkMothersMilk), but it may also have more data
fields and methods that are not contained in class Mammal (e.g., method thinkCreatively).
Figure 1.3 shows this simple hierarchy. The solid line in the UML class diagram shows that
Human is a subclass of Mammal, and, therefore, Human objects can use methods drinkMothersMilk
and thinkCreatively. Objects farther down the hierarchy are more complex and less general
than those farther up. For this reason an object that is a Human is a Mammal, but the converse is
not true because every Mammal object does not necessarily have the additional properties of a
Human. Although this seems counterintuitive, the subclass Human is actually more powerful
than the superclass Mammal because it may have additional attributes that are not present in
the superclass.

A Superclass and Subclass Example
To illustrate the concepts of inheritance and class hierarchies, let’s consider a simple case of
two classes: Computer and Notebook. A Computer object has a manufacturer, processor, RAM,
and disk. A notebook computer is a kind of computer, so it has all the properties of a com-
puter plus some additional features (screen size and weight). There may be other subclasses,
such as tablet computer or game computer, but we will ignore them for now. We can define
class Notebook as a subclass of class Computer. Figure 1.4 shows the class hierarchy.

Class Computer

Listing 1.2 shows class Computer.Java. It is defined like any other class. It contains a construc-
tor, several accessors, a toString method, and a method computePower, which returns the
product of its RAM size and processor speed as a simple measure of its power.

Mammal

drinkMothersMilk()

Human

thinkCreatively()

F I G U R E 1 . 3

Classes Mammal and

Human

Computer

String manufacturer
String processor
int ramSize
int diskSize
double processorSpeed

int getRamSize()
int getDiskSize()
double getProcessorSpeed()
double computePower()
String toString()

Notebook

double screenSize
double weight

F I G U R E 1 . 4

Classes NoteBook and

Computer

L I S T I N G 1 . 2

Class Computer.java

/** Class that represents a computer. */
public class Computer {
 // Data Fields
 private String manufacturer;
 private String processor;
 private double ramSize;
 private int diskSize;
 private double processorSpeed;

 // Methods
 /** Initializes a Computer object with all properties specified.
 @param man The computer manufacturer
 @param processor The processor type
 @param ram The RAM size
 @param disk The disk size
 @param procSpeed The processor speed
 */
 public Computer(String man, String processor, double ram,
 int disk, double procSpeed) {

Koffman-c01.indd 8 10/30/2015 7:39:49 PM

1.2 Introduction to Object‐Oriented Programming (OOP) 9

Use of this.
In the constructor for the Computer class, the statement

this.processor = processor;

sets data field processor in the object under construction to reference the same string as
parameter processor. The prefix this. makes data field processor visible in the constructor.
This is necessary because the declaration of processor as a parameter hides the data field
declaration.

 manufacturer = man;
 this.processor = processor;
 ramSize = ram;
 diskSize = disk;
 processorSpeed = procSpeed;
 }

 public double computePower() { return ramSize * processorSpeed; }
 public double getRamSize() { return ramSize; }
 public double getProcessorSpeed() { return processorSpeed; }
 public int getDiskSize() { return diskSize; }
 // Insert other accessor and modifier methods here.

 public String toString() {
 String result = "Manufacturer: " + manufacturer +
 "\nCPU: " + processor +
 "\nRAM: " + ramSize + " gigabytes" +
 "\nDisk: " + diskSize + " gigabytes" +
 "\nProcessor speed: " + processorSpeed + " gigahertz";
 return result;
 }
}

Class Notebook

In the Notebook class diagram in Figure 1.4, we show just the data fields declared in class
Notebook; however, Notebook objects also have the data fields that are inherited from class
Computer (processor, ramSize, and so forth). The first line in class Notebook (Listing 1.3),

public class Notebook extends Computer {

 P I T F A L L

Not Using this. to Access a Hidden Data Field
If you write the preceding statement as

processor = processor; // Copy parameter processor to itself.

you will not get an error, but the data field processor in the Computer object under
construction will not be initialized and will retain its default value (null). If you later
attempt to use data field processor, you may get an error or just an unexpected result.
Some IDEs will provide a warning if this. is omitted.

Koffman-c01.indd 9 10/30/2015 7:39:49 PM

